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Abstract. The first part of the paper presents a study regarding the dy-
namics behavior of thin circular plate clamped all around. An analytical 
investigation is performed and the results in terms of mode shapes are 
used to highlight the plate’s dynamics. The modal shapes are obtained 
using Bessel functions and their graphic representation is presented in 
3D by using MS Excel software. 
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1. Introduction 

In mechanical and civil engineering structures, the circular plates are often used. 
Their support types are imposed by different conditions and often are imposed 

by the structures functions and exploitation [1]. 
Circular plates are plane and thinned structures which are characterized by the 

thickness h. The thickness is small compared to the radius R [2]. 
Many researchers have been obtained analytical solutions. Their research has 

focus on the topic of natural frequencies of the plates [3-6]. 
The first researches regarding vibrations of plates were published at the end of 

the 18th century by researchers as Euler and Bernoulli. Their research was continued 
by Tanaka, Chladni, Konig, Rayleigh, Ritz etc. 

In the recent times: Timoshenko and Leissa for instance brought important pro-
gresses in this domain [7-11], by development of methods in order to solve the plates 
and establish some solutions of their differential equations of equilibrium. 

In the paper, the modal functions for a circular plate clamped all around are 
derived by using Bessel functions and the normalized modal shapes are illustrated in 
3D by using MS Excel. 
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2. Analytical approach 

Following the methodology described in [2] the differential equation of motion 
for the transverse displacement w of a circular plate is given by: 

 𝐷𝐷∇4𝑤𝑤 + 𝜌𝜌 ð2𝑤𝑤
ð𝑡𝑡2

 (1) 

where, 
D [Nm] is the flexural rigidity and is defined by: 

 𝐷𝐷 = 𝐸𝐸ℎ3

12(1−𝜈𝜈2) (2) 

E [N/m2] is Young’s modulus 
h [m] is the plate thickness 
ν is Poisson’s ratio 
ρ [m] is mass density per unit area of the plate 
t [s] is time 
∇4= (∇2)2 and ∇2 is the Laplacian operator. 
Free vibrations are assumed and the motion is expressed as: 

 𝑤𝑤 = 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝜔𝜔𝜔𝜔) (3) 

where, 
ω [rad/s] is the circular frequency 
W is a function only of the position coordinates. 
Then, by substituting the equation (3) into equation (1) we obtained: 

 (∇4 − 𝑘𝑘4)𝑊𝑊 = (∇2 + 𝑘𝑘2)(∇2 − 𝑘𝑘2)𝑊𝑊 (4) 

where the dimensionless wave number k defined as: 

 𝑘𝑘4 = 𝜌𝜌𝜔𝜔2

𝐷𝐷
 (5) 

By superimposing the solutions, the complete solution to equation (4) become: 

 �∇
2𝑊𝑊1 + 𝑘𝑘2𝑊𝑊1 = 0
∇2𝑊𝑊2 − 𝑘𝑘2𝑊𝑊2 = 0

 (6) 

It is assumed that the Fourier components are in θ and the solutions (6) becomes: 

 𝑊𝑊(𝑟𝑟,𝜃𝜃) = ∑ 𝑊𝑊𝑛𝑛(𝑟𝑟) cos(𝑛𝑛𝜃𝜃)∞
𝑛𝑛=0 + ∑ 𝑊𝑊𝑛𝑛

∗(𝑟𝑟) sin(𝑛𝑛𝜃𝜃)∞
𝑛𝑛=1  (7) 

The origin of a polar coordinate system of the circular plate clamped all around 
is taken to coincide with the center of the circular plate. For the analyzed case, the 
plate has no internal holes. The symmetry of the boundary conditions respect to one 
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or more diameters of the circular plate exist. In this case the terms involving sin(nθ) 
are not needed [11]. 

Taking in consideration the Bessel functions, by substituting the equation (7) 
into equation (6), the general solution in polar coordinates for the circular plate be-
comes: 

 𝑊𝑊𝑛𝑛(𝑟𝑟,𝜃𝜃) = [𝐴𝐴𝑛𝑛𝐽𝐽𝑛𝑛(𝑘𝑘𝑟𝑟) + 𝐶𝐶𝑛𝑛𝐼𝐼𝑛𝑛(𝑘𝑘𝑟𝑟)]𝑊𝑊𝑊𝑊𝑊𝑊(𝑛𝑛𝜃𝜃) (8) 

where, 
n = 0 ... ∞ represents the number of nodal diameters 
An, Bn are the coefficients obtained from boundary conditions 
Jn is the Bessel function of the first kind 
In is the modified Bessel function of the first kind. 
The boundary conditions for a circular plate clamped all around with radius R : 

 �
𝑊𝑊(𝑅𝑅) = 0
ð𝑊𝑊(𝑅𝑅)

ð𝑟𝑟
= 0  (9) 

When equation (9) is substituted into equation (8), the existence of a nontrivial 
solution yields the characteristic determinant: 

 �
𝐽𝐽𝑛𝑛(𝜆𝜆) 𝐼𝐼𝑛𝑛(𝜆𝜆)
𝐽𝐽′𝑛𝑛(𝜆𝜆) 𝐼𝐼′𝑛𝑛(𝜆𝜆)� = 0 (10) 

where, λ=kR. 
Next, the recursion relations will be used: 

 �
𝜆𝜆𝐽𝐽′𝑛𝑛(𝜆𝜆) = 𝑛𝑛𝐽𝐽𝑛𝑛(𝜆𝜆) − 𝜆𝜆𝐽𝐽𝑛𝑛+1(𝜆𝜆)
𝜆𝜆𝐼𝐼′𝑛𝑛(𝜆𝜆) = 𝑛𝑛𝐼𝐼𝑛𝑛(𝜆𝜆) + 𝜆𝜆𝐽𝐽𝑛𝑛+1(𝜆𝜆) (11) 

The frequency equation is obtained by expanding equation (10): 

 𝐽𝐽𝑛𝑛(𝜆𝜆)𝐽𝐽𝑛𝑛+1(𝜆𝜆) + 𝐼𝐼𝑛𝑛(𝜆𝜆)𝐽𝐽𝑛𝑛+1(𝜆𝜆) = 0 (12) 

The solutions of the frequency equation give us the dimensionless wave num-
bers λ2, where, n represents the number of nodal diameters, and s the number of 
nodal circles and does not include the contour circle. 

The normalized mode shape function is: 

 �
𝑊𝑊(𝑟𝑟,𝜃𝜃)𝑛𝑛,𝑠𝑠 = �𝐽𝐽𝑛𝑛 �𝜆𝜆𝑛𝑛,𝑠𝑠, 𝑟𝑟

𝑅𝑅
� − 𝐽𝐽𝑛𝑛�𝜆𝜆𝑛𝑛,𝑠𝑠�

𝐼𝐼𝑛𝑛�𝜆𝜆𝑛𝑛,𝑠𝑠�
𝐼𝐼𝑛𝑛 �𝜆𝜆𝑛𝑛,𝑠𝑠, 𝑟𝑟

𝑅𝑅
�� cos(𝑛𝑛𝜃𝜃)

𝑊𝑊(𝑟𝑟, 𝜃𝜃)𝑛𝑛,𝑠𝑠 = �𝐽𝐽𝑛𝑛 �𝜆𝜆𝑛𝑛,𝑠𝑠, 𝑟𝑟
𝑅𝑅
� − 𝐽𝐽𝑛𝑛�𝜆𝜆𝑛𝑛,𝑠𝑠�

𝐼𝐼𝑛𝑛�𝜆𝜆𝑛𝑛,𝑠𝑠�
𝐼𝐼𝑛𝑛 �𝜆𝜆𝑛𝑛,𝑠𝑠, 𝑟𝑟

𝑅𝑅
�� sin(𝑛𝑛𝜃𝜃)

 (13) 

 



 
78 

3. Results 

The dimensionless wave numbers λn,s
2 depending on the number of nodal di-

ameters n, respectively the number of nodal circles s are presented in table 1. 
 

Table 1. Dimensionless wave numbers λn,s
2 

s Nodal diameters n 

0 1 2 3 4 5 

0 10.21583 21.2604 34.87704 51.03004 69.66583 90.73899 

1 39.77115 60.82867 84.58265 111.0214 140.1079 171.8030 

2 89.10414 120.0792 153.8151 190.3038 229.5186 271.4282 

3 158.1842 199.0534 242.7206 289.1799 338.4112 390.3895 

4 247.0064 297.7601 351.3360 407.7295 466.9250 528.9021 

5 355.5693 416.2026 479.6751 545.9830 615.1140 687.0511 

6 483.8722 554.3824 627.7441 703.9546 783.0036 864.8769 
 
The mode shapes for the circular plate clamped all around is presented in the 

figures 1 - 7. 
Fig. 1 present the first six vibration modes for nodal circle s=0 and nodal diam-

eters n=0, 1, 2, 3, 4 and 5. 
Fig. 2 present the first six vibration modes for nodal circle s=1 and nodal diam-

eters n=0, 1, 2, 3, 4 and 5. 
Fig. 3 present the first six vibration modes for nodal circle s=2 and nodal diam-

eters n=0, 1, 2, 3, 4 and 5. 
Fig. 4 present the first six vibration modes for nodal circle s=3 and nodal diam-

eters n=0, 1, 2, 3, 4 and 5. 
Fig. 5 present the first six vibration modes for nodal circle s=4 and nodal diam-

eters n=0, 1, 2, 3, 4 and 5. 
Fig. 6 present the first six vibration modes for nodal circle s=5 and nodal diam-

eters n=0, 1, 2, 3, 4 and 5. 
Fig. 7 present the first six vibration modes for nodal circle s=6 and nodal diam-

eters n=0, 1, 2, 3, 4 and 5. 
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Figure 1. Mode shapes for the circular plate clamped all around; nodal circle s=0, 
nodal diameters n=0, …, 5. 
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Figure 2. Mode shapes for the circular plate clamped all around; nodal circle s=1, 
nodal diameters n=0, …, 5. 
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Figure 3. Mode shapes for the circular plate clamped all around; nodal circle s=2, 
nodal diameters n=0, …, 5. 
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Figure 4. Mode shapes for the circular plate clamped all around; nodal circle s=3, 
nodal diameters n=0, …, 5. 
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Figure 5. Mode shapes for the circular plate clamped all around; nodal circle s=4, 
nodal diameters n=0, …, 5. 
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Figure 6. Mode shapes for the circular plate clamped all around; nodal circle s=5, 
nodal diameters n=0, …, 5. 
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Figure 7. Mode shapes for the circular plate clamped all around; nodal circle s=5, 
nodal diameters n=0, …, 5. 

4. Conclusions 

The paper presents the vibration modes for a circular plate clamped all around 
in a 3D representation using MS Excel software. Using the Bessel functions, the 
frequency equation and the modal function were analytically determined. 
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The dimensionless wave numbers λn,s
2 were calculated for six values of the 

nodal diameters n=0, 1, .., 5 and seven values of the nodal circles s=0, 1, ..., 6 and 
presented in table 1. 

For these values of nodal diameters and nodal circles, the modal shapes for a 
circular plate clamped all around in polar coordinates are illustrated in figures 1 – 7, 
by using the first relation of the system (13), respectively taking cos(nθ) into ac-
count. In this case, the inflection points of the odd nodal diameters (n) pass through 
the y axis, and the modal function along this direction has zero value. 

If the second relation of the system (13) is used, which takes sin(nθ) into ac-
count, the representation of the modal shapes is rotated by 90 degrees, respectively, 
the inflection points of the modal shapes for odd nodal diameters (n) pass through 
the x axis (fig. 8 – 10). 

 

 
Figure 8. Mode shapes for the circular plate clamped all around with sin(nθ); 

nodal circle s=0. 
 

 
Figure 9. Mode shapes for the circular plate clamped all around with sin(nθ); 

nodal circle s=1. 
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Figure 10. Mode shapes for the circular plate clamped all around with sin(nθ); 

nodal circle s=2. 
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